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ABSTRACT

Chiral nonracemic γ-seleno-r,�-ethylenic esters, when treated with sulfuryl chloride and ethyl vinyl ether in hexanes, produced r-chloro-
�,γ-ethylenic esters in 65-75% yields, with ee values of 95-97%, and with 1,3-syn transfer of chirality. Reaction of these allylic chloride
electrophiles with methylcuprate and with sodium azide nucleophiles afforded exclusively γ-substituted-r,�-ethylenic esters with faithful anti-
transfer of chirality on multigram scale.

Current literature records considerable interest in enantio-
merically pure secondary allylic chlorides1,2 and secondary
R-chloro esters.3 These useful chirons have been employed
in a variety of organic reactions including the following:
inter- and intramolecular SN2 and SN2′ reactions,4 Pd cross
couplings,5 Friedel-Crafts alkylations,6 radical reactions,7

and a wide variety of organometallic reactions (e.g., Grig-
nard).8 We describe here asymmetric, organocatalytic syn-
thesis of γ-seleno-R,�-ethylenic esters9,10,11 and, for the first
time, their enantiocontrolled conversion, in one step, into
diverse R-chloro-�,γ-ethylenic esters 2. These highly enan-
tioenriched electrophilic secondary allylic chlorides 2, which
are also R-chloro esters, undergo highly stereocontrolled
substitution reactions with carbon and nitrogen nucleophiles
yielding γ-methyl-R,�-ethylenic esters 3 and γ-amino-R,�-
ethylenic tert-butyl esters 5 in good yields and high ee values
(Scheme 1).

Previous reports described reactions of some racemic
γ-seleno-R,�-ethylenic esters with sulfuryl chloride to form
putative selenium dichloride intermediates followed in situ
by spontaneous allylic transpositions to produce R-chloro-
�,γ-ethylenic esters as mixtures of di- and trisubstituted olefin
geometric isomers.12 We show now for the first time that
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this protocol, when applied to chiral nonracemic γ-seleno-
R,�-ethylenic esters 1, proceeded with faithful 1,3-syn
transfer of chirality to form diverse R-chloro-�,γ-ethylenic
chlorides 2 in good yields, with exclusive (E)-olefin geom-
etry, and, especially significant, in at least 95% ee as
determined by chiral HPLC (Scheme 1, Table 1). The

important role of ethyl vinyl ether is likely to trap any PhSeCl
produced during the conversions of allylic selenides 1 into
allylic chlorides 2. This protocol tolerated a diverse range
of R and R′ groups. X-ray crystallographic analysis of the
diol 6, the major diol diastereomer formed via osmium
tetroxide catalyzed syn-dihydroxylation of allylic chloride
2a (Scheme 2), led to the unambiguous assignment of the
three contiguous stereocenters as 2S, 3S, 4R. Therefore, the
conversion of allylic selenide 1 into allylically transposed
chloride 2 proceeded reliably with syn stereochemistry.2 The
chemically and stereochemically rich diol 6 is itself a
synthetically versatile chiron.13 Secondary allylic chlorides

2 were chemically and stereochemically stable for at least 3
days at room temperature when dissolved in methanol,
tetrahydrofuran, acetonitrile, chloroform, acetone, or hexanes;
however, after only a few hours at room temperature in N,N-
dimethylformamide, considerable racemization was observed
by chiral HPLC analysis. Disappointingly, the corresponding
R-chloro-�,γ-ethylenic nitriles, produced in good yields and
high ee values, partially racemized in such solvents as
chloroform, tetrahydrofuran, and especially acetonitrile at 40
°C for 48 h. We report here successful use of carbon and
nitrogen nucleophiles to effect substitutions of the chloride
in allylic chlorides 2.

Asymmetric organocopper SN2′ substitution reactions on
R-hydroxy-�,γ-ethylenic esters in which the hydroxy group
has been esterified into a phosphate leaving group have been
reported.14 However, asymmetric organocopper substitution
reactions on R-chloro-�,γ-ethylenic esters have not been
reported probably due to the previous inaccessibility of these
chirons. Pursuing our long interest in organocopper chem-
istry,15 we treated allylic chlorides 2a,d-f,h with
Me2CuMgBr (derived from 1 equiv of CuCN and 2 equiv
of MeMgBr) in THF (Scheme 1, Table 2) to yield γ-methyl-

R,�-ethylenic esters 3 via an SN2′ mechanism in good yields
and with faithful transfer of chirality from the starting allylic
chloride. Since both syn and anti SN2′ pathways are possible
during organocopper allylic substitutions,16 the anti-SN2′
pathway of this transformation was established by stereo-
chemical correlation of ester 3e with the same intermediate
reported in a total synthesis of the mealworm sex pheromone
(R)-4-methyl-1-nonanol (7) (Scheme 3). This new 4-step
synthesis of alcohol 7, in 22% overall yield and in 97% ee,
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Scheme 1

Table 1. Selenide 1 to Chloride 2 Transformations

product R R′
yield

of 1 (%)
yield of
2 (%)

ee of
2 (%)

a PhCH2 t-Bu 91 75 97
b PhCH2 Me 72 75 95
c PhCH2 Et 79 72 95
d PhCH2 PhCH2 80 78 95
e CH3(CH2)4 Me 75 71 97
f CH2dCH(CH2)7 t-Bu 54 69 97
g cyclohexyl t-Bu 75 65 96
h PhCH2O(CH2)4 t-Bu 72 68 97

Scheme 2

Table 2. Methylations of Allyic Chlorides 2

product R R′ yield of 3 (%) ee of 3 (%)

3a PhCH2 t-Bu 88 95
3d PhCH2 PhCH2 57 93
3e CH3(CH2)4 Me 70 96
3f CH2dCH(CH2)7 t-Bu 57 97
3h PhCH2O(CH2)4 t-Bu 80 96
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has distinct advantages over previously reported asymmetric
syntheses of this pheromone in terms of stereochemical
purity,14 number of steps, and total yield.17 Furthermore, the
chiral γ-methyl-R,�-enoate structural unit is present in many
natural products, including steroids,18 macrolides,19 and
squalestatins.20 The scalability of this short protocol was
confirmed when 2.8 g of γ-methyl ester 3a was synthesized
in 60% overall yield and 95% ee starting with commercial
3-phenylpropanal.21 Lithium dimethylcuprate (Me2CuLi) also
gave exclusive SN2′ methylation but in much lower yield
than the magnesiocuprate used in Table 2. Attempts to
synthesize other γ-alkyl-R,�-ethylenic esters with this mag-
nesiocuprate allylic substitution procedure yielded mixtures
of inseparable R- and γ-substitution products. We do not
yet understand fully the critical factors that determine R- vs
γ-substitution.

Syntheses of non-natural γ-amino-R,�-ethylenic esters
(vinylogous R-amino esters)22 5 (Scheme 1) are appealing
due to these amino esters having diverse chemical properties
ranging from induction of a non-natural secondary structure
in polypeptides23 to inhibition of enzyme function.24 To this
end, we treated allylic chlorides 2 with sodium azide,
followed by in situ stannous chloride reduction to the amine,
which was then treated with di-tert-butyl dicarbonate af-
fording the N-Boc-γ-amino-R,�-ethylenic tert-butyl esters 5
(Scheme 1, Table 3) in good yields and with faithful 1,3-
anti-transfer of chirality. Anti-SN2′ substitutions with nitrogen
nucleophiles are well documented.25 The stereochemical
course of this transformation was confirmed to be 1,3-anti
by comparing the [R]D +14.4 optical rotation of the Fmoc-
γ-amino-R,�-ethylenic tert-butyl ester 5a (Fmoc) with that
of the known standard.26 We cannot rule out the possibility
that this substitution proceeded via an initial direct SN2
mechanism with stereochemical inversion followed by a
spontaneous syn-3,3-sigmatropic rearrangement of the initial

allylic azide 4r to the thermodynamically favored27 conju-
gated ester azide 4γ; subsequent azide reduction and protec-
tion yielded the known26 γ-amino conjugated ester 5a(Fmoc)
in 60% yield (Scheme 4).
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which TLC analysis indicated complete reaction. The reaction was quenched
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determined by chiral HPLC.
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Scheme 3 Table 3. Synthesis of Vinylogous N-Boc R-Amino Esters 5

product R yield of 5 (%) ee of 5 (%)

5a PhCH2 76 95
5f CH2dCH(CH2)7 51 93
5h PhCH2O(CH2)4 52 97
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In conclusion, starting from simple achiral aldehydes,
R-chloro-�,γ-ethylenic esters 2a-h were synthesized for the
first time in good yields and with ee values greater than or
equal to 95% via 1,3-syn allylic replacements of selenide
by chloride (Scheme 1, 1 f 2). These secondary allylic
chlorides 2 were converted via organocopper 1,3-anti sub-

stitutions into highly enantioenriched γ-methyl-R,�-ethylenic
esters 3 (Scheme 1, 2f 3), with 3e being a known precursor
to the natural pheromone (R)-4-methyl-1-nonanol (7). Ad-
ditionally, we report here enantiocontrolled syntheses of
functionality-rich non-natural vinylogous R-amino esters 5
via 1,3-anti allylic substitutions (Scheme 1, 2 f 4 f 5).
The chiral, nonracemic allylic chlorides 2 are versatile and
stereochemically stable electrophilic chirons which are
expected to undergo various other useful nucleophilic
substitution reactions as well as olefin addition reactions with
excellent control of chirality.
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